

Elinor Martin (University of Oklahoma)

Justin Stachnik (University of Kansas)

Rachel McCrary (NCAR)

Graduate Students: Margaret Hollis (OU) & Carrie Lewis-Merritt (KU)

Tropical Easterly Waves

- Wavelengths 2000-4000 km
- Periods 2-10 days
- Occur tropics wide
- Impact and are impacted by convection and precipitation
- ► African Easterly Waves most studied (but not fully understood)!

Easterly Wave Filtered Outgoing Longwave Radiation (McCrary et al. 2014)

Climate Model Representation of TEWs

- Wheeler and Kiladis diagrams of OLR
- Adding super parameterization (SP) improved simulation of TEWs in this model
- Wide variability between climate models

Climate Model Representation of African Easterly Waves

Hypothesize that the interaction between moist convection and TEWs is a major source of weather and climate model bias through biases in latent heating.

Goals & Objectives

- ► The goal of this project is to understand precipitation and heating during the lifecycle of tropical easterly waves (TEWs) to improve model biases in the representation of these waves.
- ▶ <u>Objective 1:</u> Determine and analyze the amount and structure of convection and precipitation over the lifecycle of TEWs across the tropics.
- Objective 2: Examine the latent heating profiles within TEWs and their relationship with TEW intensity and evolution.
- Objective 3: Diagnose variability in TEW precipitation processes spatially (region-to-region) and temporally (year-to-year).
- Objective 4: Identify and understand discrepancies in latent heating profiles of TEWs in MERRA-2 reanalysis and the NASA-GISS climate model.

TEWs in GPM Daily Data

TEWs in GPM Daily Data E. Pac Africa W. Pac 2017 mm 1 Jul 1 Jul Period:2-10 days 11 Jul Wavenumber: 21 Jul 6-15 (easterly) 31 Jul 10 Aug 20 Aug 30 Aug 60E 120E 120W 60E 120E 60W 16 32 64 8 16 32 64

TEWs in IMERG: Spectra

- Average JJAS Signal-to Noise Power Spectra for disturbances that are symmetric about the equator.
- ► IMERG: 3 hourly and 0.5°

GPM: Spatial Variability of TEWs

- ▶ JJAS mean variance of TD-filtered precipitation from IMERG.
- Unexpectedly high activity in in East Pacific

Heating Profiles (1998-2014)

- ► NASA MERRA-2 Reanalysis Temperature Tendencies
- ► TRMM/GPM Spectral Latent Heating (3HSLH v6)
- ► Full year, monthly averaged data from 1998-2014

TRMM/GPM Spectral Latent Heating (3HSLH v7)

Heating Profiles - MERRA-2

Next Step: Tracking Individual Waves in MERRA-2

▶ TRACK

 Objective feature tracking This method tracks curvature vorticity (Hodges 1995, 1999)

TEMPEST Extremes

- flexible, open-source, parallelized algorithm developed for detecting extremes in gridded climate data. (Ullrich and Zarzycki, 2017).
- Relative or Curvature Vorticity
 - ► Curvature vorticity identifies a change in wind direction over some horizontal distance and was shown by Berry et al. (2007) to be a useful diagnostic for distinguishing the trough of a wave from the background shear vorticity.
 - ▶ Enables dry and convective wave identification

TEW counts from CFSR (From Ullrich and Zarzycki (2017)

Summary

- ▶ TEWs important for convection and precipitation
- ▶ They occur globally but are studied little outside the Atlantic
- Understand spatial, temporal, and lifecycle variability of precipitation and heating associated with TEWs
- ► TEWs exist in GPM precipitation spectra
 - ▶ Weaker signal than expected
 - Maxima in Atlantic, E. Pac, and broad peak in W. Pac
- Climatological latent heating magnitude is significantly less in TRMM/GPM observations than reanalysis
- ► TRMM/GPM observed heating is more top-heavy in all domains (stratiform rain fraction)
- Upcoming year: track individual waves and associate with precipitation and heating

